Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity.

نویسندگان

  • Nuria Menéndez
  • Mohammad Nur-e-Alam
  • Carsten Fischer
  • Alfredo F Braña
  • José A Salas
  • Jürgen Rohr
  • Carmen Méndez
چکیده

Chromomycin A3 is an antitumor drug produced by Streptomyces griseus subsp. griseus. It consists of a tricyclic aglycone with two aliphatic side chains and two O-glycosidically linked saccharide chains, a disaccharide of 4-O-acetyl-D-oliose (sugar A) and 4-O-methyl-D-oliose (sugar B), and a trisaccharide of D-olivose (sugar C), D-olivose (sugar D), and 4-O-acetyl-L-chromose B (sugar E). The chromomycin gene cluster contains four glycosyltransferase genes (cmmGI, cmmGII, cmmGIII, and cmmGIV), which were independently inactivated through gene replacement, generating mutants C60GI, C10GII, C10GIII, and C10GIV. Mutants C10GIV and C10GIII produced the known compounds premithramycinone and premithramycin A1, respectively, indicating the involvement of CmmGIV and CmmGIII in the sequential transfer of sugars C and D and possibly also of sugar E of the trisaccharide chain, to the 12a position of the tetracyclic intermediate premithramycinone. Mutant C10GII produced two new tetracyclic compounds lacking the disaccharide chain at the 8 position, named prechromomycin A3 and prechromomycin A2. All three compounds accumulated by mutant C60GI were tricyclic and lacked sugar B of the disaccharide chain, and they were named prechromomycin A4, 4A-O-deacetyl-3A-O-acetyl-prechromomycin A4, and 3A-O-acetyl-prechromomycin A4. CmmGII and CmmGI are therefore responsible for the formation of the disaccharide chain by incorporating, in a sequential manner, two D-oliosyl residues to the 8 position of the biosynthetic intermediate prechromomycin A3. A biosynthetic pathway is proposed for the glycosylation events in chromomycin A3 biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chromomycin CmmA acetyltransferase: a membrane‐bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin

Mithramycin and chromomycin A(3) are two structurally related antitumour compounds, which differ in the glycosylation profiles and functional group substitutions of the sugars. Chromomycin contains two acetyl groups, which are incorporated during the biosynthesis by the acetyltransferase CmmA in Streptomyces griseus ssp. griseus. A bioconversion strategy using an engineered S. griseus strain ge...

متن کامل

Biogenesis of chromomycin A3 by Streptomyces griseus.

The biosynthesis of chromomycin A3 was investigated using 13C-labeled acetates, methionine and glucose, and 13C,18O-labeled acetate. 13C NMR spectral analysis demonstrated that: Aglycone assembly occurs by combining at least two polyketide chains; three of nine oxygen atoms of the aglycone originate from acetate precursor oxygen atoms; carbon methylations on the aromatic ring at C-7, on the chr...

متن کامل

Genome sequence of Streptomyces griseus strain XylebKG-1, an ambrosia beetle-associated actinomycete.

Streptomyces griseus strain XylebKG-1 is an insect-associated strain of the well-studied actinobacterial species S. griseus. Here, we present the genome of XylebKG-1 and discuss its similarity to the genome of S. griseus subsp. griseus NBRC13350. XylebKG-1 was isolated from the fungus-cultivating Xyleborinus saxesenii system. Given its similarity to free-living S. griseus subsp. griseus NBRC133...

متن کامل

Complete nucleotide sequence of a 16S ribosomal RNA gene from Streptomyces griseus subsp. griseus.

The complete nucleotide sequence of the 1525 bp 16S ribosomal RNA gene from the rrnE operon of Streptomyces griseus subsp. griseus KCTC9080 was determined (1). The 5' and 3' ends of the 16S rRNA were located with the combination of previous data (2,3,4) and have not been determined experimentally. The nucleotide sequence presented here was determined following the dideoxy method (5) and using M...

متن کامل

Oxidation of Meloxicam by Streptomyces griseus

The aim of the present investigation was to biotransform the anti-inflammatory compound meloxicam by enzymes present in whole cells of five actinomycete cultures to produce novel bioactive derivatives. Among the actinomycetes screened, Streptomyces griseus NCIM 2622 was found to possess the enzyme system(s) that oxidize meloxicam into two metabolites whereas that present in S. griseus NCIM 2623...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2006